Global estimates for the fundamental solution of homogeneous Hörmander operators
نویسندگان
چکیده
Let $${\mathcal {L}}=\sum _{j=1}^{m}X_{j}^{2}$$ be a Hörmander sum of squares vector fields in $${\mathbb {R}}^{n}$$ , where any $$X_{j}$$ is homogeneous degree 1 with respect to family non-isotropic dilations . Then, {L}}$$ known admit global fundamental solution $$\Gamma (x;y)$$ that can represented as the integral sublaplacian operator on lifting space {R}}^{n}\times {\mathbb {R}}^{p}$$ equipped Carnot group structure. The aim this paper prove pointwise (upper and lower) estimates $$\Gamma$$ terms Carnot–Carathéodory distance induced by $$X=\{X_{1},\ldots ,X_{m}\}$$ well (upper) for X-derivatives order together suitable representations these derivatives. least dimensional case $$n=2$$ presents several peculiarities which are also investigated. Applications potential theory singular-integral kernel $$X_{i}X_{j}\Gamma$$ provided. Finally, most results about extended operators drift $$\sum _{j=1}^{m}X_{j}^{2}+X_{0}$$ $$X_{0}$$ 2-homogeneous $$X_{1},\ldots ,X_{m}$$ 1-homogeneous.
منابع مشابه
Uniform Estimates of the Fundamental Solution for a Family of Hypoelliptic Operators
In this paper we are concerned with a family of elliptic operators represented as sum of square vector fields: L = ∑m i=1X 2 i + ∆, in Rn where ∆ is the Laplace operator, m < n, and the limit operator L = ∑m i=1X 2 i is hypoelliptic. It is well known that L admits a fundamental solution Γ . Here we establish some a priori estimates uniform in of it, using a modification of the lifting technique...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولOn the Fundamental Solution of a Linearized Homogeneous Coagulation Equation
We describe the fundamental solution of the equation that is obtained by linearization of the coagulation equation with kernel K (x, y) = (xy)λ/2, around the steady state f (x) = x−(3+λ)/2 with λ ∈ (1, 2). Detailed estimates on its asymptotics are obtained. Some consequences are deduced for the flux properties of the particles distributions described by such models.
متن کاملFundamental Steady state Solution for the Transversely Isotropic Half Space
Response of a transversely isotropic 3-D half-space subjected to a surface time-harmonic excitation is presented in analytical form. The derivation of the fundamental solutions expressed in terms of displacements is based on the prefect series of displacement potential functions that have been obtained in the companion paper by the authors. First the governing equations are uncoupled in the cyl...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2022
ISSN: ['1618-1891', '0373-3114']
DOI: https://doi.org/10.1007/s10231-021-01183-6